
Making MATLAB® Swing More
Project Waterloo GUI Import Support

Malcolm Lidierth
Wolfson Centre for Age-Related Diseases

http://sigtool.sourceforge.net/

Revised: 15th December 2011

http://sigtool.sourceforge.net/

Acknowlegements:

MATLAB code in this document was styled using Florian Knorn's
M-code LATEXPackage.

http://www.mathworks.com/matlabcentral/fileexchange/8015-m-code-
latex-package

The document was prepared using Pascal Brachet's TEXMaker
http://www.xm1math.net/texmaker/

Oracle and Java are registered trademarks of Oracle and/or its affiliates.
MATLAB is a registered trademark of The MathWorks, Inc. Other names
may be trademarks of their respective owners.

2

Contents

Purpose . 5
Working with imported GUIs in MATLAB 6

The getHandles method 6
The getValues method . 7
The getComponents method 8

Adding OK and Cancel buttons 8
setOK, setCancel and setQueryOnCancel methods 9
Linking instances . 11

Custom GUI design . 11
alignToRight and alignToSouth 14
createLink and removeLink 15
Assigning fieldnames . 15
Sorting field names . 16
Customising a GUI in the GImport constructor 16

Setting GUI behaviour in MATLAB 17
Using uiwait and uiresume 17
The setCallback method 18
Customising the GUI on-the-fly 18
invokeEDT . 19
invoke . 19
Static runEDT and run methods 20
The revalidate method 21
The find method . 21

Constructor options . 24
'guisize' . 24
show and hide methods and options 25
'center' . 25
'noresize' . 25

3

'nolayout' . 25
Layout Management . 26

getManagedLayoutList 26
Editing the managed layout list 27
getExcludedClasses . 27

Using GImport with JFrames 29
Drag and Drop support . 30

putDragEnabled and setDragEnabled 30
putDropCallback . 30
The DNDAssistant class 31

Appendix 1: GUI designers 32
Eclipse . 32
NetBeans . 32
IntelliJ IDEA . 32

4

Purpose

The GImport class enables easy import of graphical user-interfaces (GUIs)
designed using Java Swing. With this class you can import GUIs designed
in external GUI-designers such as those in NetBeans1, Eclipse2 and IntelliJ
IDEA3 and display them in standard MATLAB figures and uipanels.

The GImport class is part of Project Waterloo and requires the jcontrol
class from that project which is available from http://sigtool.sourceforge.
net/.

This document explains the use of GImport. It is not a guide to Java
use in MATLAB. For that, I recommend Yair Altman's Undocumented Se-
crets of MATLAB Java Programming, (ISBN 9781439869031) Chapman
& Hall/CRC Press, 2011.

1http://netbeans.org/
2http://www.eclipse.org/
3http://www.jetbrains.com/idea/

5

http://sigtool.sourceforge.net/
http://sigtool.sourceforge.net/
http://netbeans.org/
http://www.eclipse.org/
http://www.jetbrains.com/idea/

GImport use is extremely easy. For example, given a custom MATLAB
class called SimplePanel in a package called examples, install the GUI into
a MATLAB figure using

g=GImport (f i g u r e () , examples .S implePanel ()) ;

The imported GUI and all of its components will produce 'normalized' re-
size behaviour just like standard MATLAB uicontrols. All components of
the GUI will be programatically available in MATLAB. Their properties can
be altered on-the-fly and you can add and remove components just as you
might in Java. The panel is populated with 10 Swing check boxes in a sim-
ple grid. Figure 1 show the panel displayed in a MATLAB figure window
using the code above.

Figure 1: A simple GUI

Working with imported GUIs in MATLAB

To work with imported components in MATLAB requires access to their
handles. The GImport class has several convenience methods to make this
easy: getHandles, getComponents and find. Additionally, the getValues
method returns the values of the GUI components.

The getHandles method

To get the handles of the buttons as a structure, call the getHandles method:

s=g .getHandle s ()

6

which, for the GUI shown above, will display the following

SimplePanel: [1x1 javahandle_withcallbacks.examples.SimplePanel]
jCheckBox1: [1x1 javahandle_withcallbacks.javax.swing.JCheckBox]
jCheckBox2: [1x1 javahandle_withcallbacks.javax.swing.JCheckBox]
jCheckBox3: [1x1 javahandle_withcallbacks.javax.swing.JCheckBox]
jCheckBox4: [1x1 javahandle_withcallbacks.javax.swing.JCheckBox]
jCheckBox5: [1x1 javahandle_withcallbacks.javax.swing.JCheckBox]
jCheckBox6: [1x1 javahandle_withcallbacks.javax.swing.JCheckBox]
jCheckBox7: [1x1 javahandle_withcallbacks.javax.swing.JCheckBox]
jCheckBox8: [1x1 javahandle_withcallbacks.javax.swing.JCheckBox]

The names of fields of the structure are shown to the left of the ":" on each
line and the contents to the right. Field names are derived from the GUI as
described further below in . To access individual items use standard syntax
such as:

>> s. jCheckBox4.getText ()
ans =
jCheckBox4

The getValues method

The values of all of the GUI items can be retrieved using the getValues
method which returns a strucure with the values returned by each com-
ponent in the getHandles structure. Fot the checkbox example above

g .ge tVa lue s ()

returns

SimplePanel: []
jCheckBox1: 1
jCheckBox2: 0
jCheckBox3: 1
jCheckBox4: 0
jCheckBox5: 0
jCheckBox6: 1
jCheckBox7: 0
jCheckBox8: 1

7

The value for the panel is empty. Other fields are set true (1) or false (0)
depending on the state of the checkbox as seen in Figure 1. Where a compo-
nent returns a string, the string will be converted to numeric values where
possible. The getValues method returns an empty value for components
that have no value such a JPanel and may also return empty for non-standard
Swing components. In those cases, user-code will need to retrieve the value
explicitly via the handle.

The getComponents method

While getHandles returns a structured list of components and getValue re-
turns a matching structure of their values, getComponents returns a flat-
tened vector of components as a cell array.

g.getComponents () ;

produces:

[1x1 javahandle_withcallbacks.examples.SimplePanel]
[1x1 javahandle_withcallbacks.javax.swing.JCheckBox]
[1x1 javahandle_withcallbacks.javax.swing.JCheckBox]
[1x1 javahandle_withcallbacks.javax.swing.JCheckBox]
[1x1 javahandle_withcallbacks.javax.swing.JCheckBox]
[1x1 javahandle_withcallbacks.javax.swing.JCheckBox]
[1x1 javahandle_withcallbacks.javax.swing.JCheckBox]
[1x1 javahandle_withcallbacks.javax.swing.JCheckBox]
[1x1 javahandle_withcallbacks.javax.swing.JCheckBox]

As described more fully below, the GImport constructor has an optional
input that can be used to simplify the structure returned by the getHandles
method and to include only those components that the user selects at the
GUI design stage. In contrast, getComponents always returns a full list of
components in the hierarchy.

Adding OK and Cancel buttons

Often, MATLAB code execution will need to be stopped while a GUI is dis-
played to allow user interaction. Figure 2 shows a modified simple panel
that has 2 added buttons: OK and Cancel. Take a look at the structure, s,
returned by s=getHandles() method:

8

Figure 2: The GUI from Fig. 2 with OK ansd Cancel buttons added

SimplePanelOK: [1x1 javahandle_withcallbacks.examples.SimplePanelOK]
Cancel: [1x1 javahandle_withcallbacks.javax.swing.JButton]
OK: [1x1 javahandle_withcallbacks.javax.swing.JButton]

jCheckBox1: [1x1 javahandle_withcallbacks.javax.swing.JCheckBox]
jCheckBox2: [1x1 javahandle_withcallbacks.javax.swing.JCheckBox]
jCheckBox3: [1x1 javahandle_withcallbacks.javax.swing.JCheckBox]
jCheckBox4: [1x1 javahandle_withcallbacks.javax.swing.JCheckBox]
jCheckBox5: [1x1 javahandle_withcallbacks.javax.swing.JCheckBox]
jCheckBox6: [1x1 javahandle_withcallbacks.javax.swing.JCheckBox]
jCheckBox7: [1x1 javahandle_withcallbacks.javax.swing.JCheckBox]
jCheckBox8: [1x1 javahandle_withcallbacks.javax.swing.JCheckBox]

The OK and Cancel buttons now appear in the list. Their callbacks can be
programmed as usual but the GImport class provides convenience meth-
ods for this. Construct the instance using:

g=GImport (f i g u r e () , examples.SimplePanelOK ()) ;
u iwa i t () ;

setOK, setCancel and setQueryOnCancel methods

MATLAB code execution will be suspended by the uiwait() command until
the Cancel or OK buttons are clicked because the GImport constructor au-
tomatically recognises buttons labelled "OK" and "Cancel" in the top level
container and sets up the callbacks accordingly. To program these explic-
itly use the setOK, and setCancel or setQueryOnCancel methods e.g.

9

g.setOK (g .getHandle s () .OK) ;
g.setQueryOnCancel (g .ge tHandle s () .Cance l) ;

OR

g.setOK (g .getHandle s () .OK) ;
g . s e tCance l (g .ge tHandle s () .Cance l) ;

These set up the MouseClickedCallbacks of the specified components as
follows:

1. Cancel
The GUI will be deleted together with the GImport instance and a
uiresume() will be issued.

2. QueryOnCancel
An option pane will appear and the user will be asked to confirm that
they meant to press Cancel4 . If the answer is Yes, the GUI will be

Figure 3: TheQuery on Cancel option pane

deleted together with the GImport instance and a uiresume() will be
issued.

3. OK
The getValues() method will be called to retrieve the values in all
components. These will be stored in the GImport instance. The GUI
will be deleted and all handles in the GImport instance will be cleared.
A uiresume() will be issued. The GImport instance will not be deleted
so can be queried as before with the getValues method which will re-
turn the values stored when OK was clicked. The instance will then
be deleted by the getValues method.

4A static method, GImport.setIcon, allows the user to set an icon that will be displayed
to the left in this option pane

10

Linking instances

Often, there will be only one OK or Cancel button but several GImport in-
stances containing seperate, related GUIs. The createLink and removeLink
methods allow additional GUIs to be linked.

g . c r ea t eLInk (GImportInstance) ;

marks GImportInstance to be deleted along with g. When OK is clicked,
getValues will be run on all linked linked GImport instances before the
display is removed.

g.removeLInk (GImportInstance) ;

removes any link to g. Maintain links in a the main GImport instance con-
tining the OK and Cancel buttons. Links are unidirectional.

Custom GUI design

By default, the GImport constructor adds all components to the structure
returned by the getHandles and getValues methods which then mimics the
Swing component hierarchy. These structures can be cumbersome with
even moderately complex GUIs. Also, if the GUI is edited, the path to a
field in the returned structure may change. The GImport constructor has
an optional flag which causes only selected components to be added to the
hierarchy.

g=GImport (MATLABcontainer , j avaob jec t , inc ludeF lag) ;

Setting includeFlag to false, causes the constructor only to include speci-
fied components in the structure. Specify them by setting the Name prop-
erty of individual components at the GUI design stage. Components that
have an empty Name property will not be included. For those where the
Name property is set, the first character determines whether the compo-
nent will be included and can be '$' or '+' :

1. '$' The component will be included

2. '+' The component will be included together with all of its subcompo-
nents

Note that this has no effect on the layout of components: only of the struc-
ture returned by the getHandles and getValues methods. The effect is to

11

flatten, or partially flatten, the structures returned by getHandles and get-
Values making further programming easier and making it likely that minor
revisions of a GUI design will not substantially alter the structures returned
- thus not breaking MATLAB code dsigned to deal with them.

This is best illustrated with a real GUI. Fig. 4 shows one from the sig-
TOOL Project that this code was developed to support. A JPanel contains
two other JPanels. That at the top just contains a title and logo. That be-
neath has a set of JComboBoxes and JButtons. Each of the JComboBoxes
is contained in a JPanel with a TitledBorder.

Figure 4: A GUI from the sigTOOL project

If this were imported with the includeFlag set to true e.g. with:

g=GImport (u ipane l (f i g u r e (1) , ’ Units ’ , ...
’ normal ized ’ , ’ Po s i t i on ’ , [0 . 2 0 . 2 0 . 2 0 . 7]) , ...
k c l . s i g t o o l . g u i . D e f a u l t P a n e l () , t rue) ;

the structure returned by getHandles() would look as follows:

DefaultPanel: [1x1 javahandle_withcallbacks.kcl.sigtool.gui.DefaultPanel]
JPanel: [1x1 struct]

JPanel_0: [1x1 struct]

JPanel_0 is the lower panel. To access the combobox labelled "Source
Channel(s)" we would need to access it via its titled JPanel and use the
rather cumbersome:

g .getHandle s () .JPanel_0.JPanel_1.ChannelB

12

to dig through the nested panels. This would return all the components
that make up the JComboBox which is a compound component:

ChannelB: [1x1 javahandle_withcallbacks.javax.swing.JComboBox]
AquaComboBoxButton: [1x1 javahandle_withcallbacks.com.apple.laf.AquaComboBoxButton]
AquaComboBoxUI0x24AquaCustomComboTextField: ...
[1x1 javahandle_withcallbacks.com.apple.laf.AquaComboBoxUI$AquaCustomComboTextField]
CellRendererPane: [1x1 javahandle_withcallbacks.javax.swing.CellRendererPane]

The only component of real interest is the JComboBox which has the Name
property of "$ChannelB" set by the GUI designer. Things are much simpler
when the includeFlag is set to false:

g=GImport (u ipane l (f i g u r e (1) , ’ Units ’ , ...
’ normal ized ’ , ’ Po s i t i on ’ , [0 . 2 0 . 2 0 . 4 0 . 4]) , ...
k c l . s i g t o o l . g u i . D e f a u l t P a n e l , f a l s e) ;

Now getHandles returns a flattened structure that only has those compo-
nents Named with a string starting with "$" (or "+", but that is not used
here):

g .getHandle s ()
returns

DefaultPanel: [1x1 javahandle_withcallbacks.kcl.sigtool.gui.DefaultPanel]
ApplyToAll: [1x1 javahandle_withcallbacks.javax.swing.JCheckBox]
Cancel: [1x1 javahandle_withcallbacks.javax.swing.JButton]
ChannelA: [1x1 javahandle_withcallbacks.javax.swing.JComboBox]
ChannelB: [1x1 javahandle_withcallbacks.javax.swing.JComboBox]
Help: [1x1 javahandle_withcallbacks.javax.swing.JButton]
Logo: [1x1 javahandle_withcallbacks.javax.swing.JButton]
OK: [1x1 javahandle_withcallbacks.javax.swing.JButton]
Start: [1x1 javahandle_withcallbacks.javax.swing.JComboBox]
Stop: [1x1 javahandle_withcallbacks.javax.swing.JComboBox]
Title: [1x1 javahandle_withcallbacks.javax.swing.JLabel]

Note how all the components that have been appropriately named are now
in the list. This includes the JButton that carries the project logo (so the
icon can be set on the fly), and the OK and Cancel buttons which will be au-
tomatically detected and supported by the GImport constructor. To access
the combo box above now just needs

g .getHandle s () .ChannelB

Access to all components is still available through the getComponents and
find methods but the structure returned by getHandles will often prove
easier to use. If we want to customise a feature not in the structure, just
use standard Java: to change the title of the JPanel that houses the combo
box for example:

13

combobox=g.getHandle s () .ChannelB ;
combobox.getParent () . ge tBorder () . s e t T i t l e (’ Change ...

the t i t l e to t h i s ’) ;

This change will be done on the EDT. A single GUI can then be designed
but customised on-the-fly in MATLAB to suit different analyses. The GUI
in Fig. 4 is used repeatedly in sigTOOL. To keep things simple, a second
GUI allowing optional arguments for different analyses is kept separate by
associated with the principle GUI as required. Figure 5 shows the result
- in this case with the generic combobox titles still showing: they would
normally be customised on-the-fly for each analysis type.

Figure 5: The GUI of Fig. 4 extended with the standard options panel in
sigTOOL

alignToRight and alignToSouth

In Fig. 5 , two GUIs have been designed and aligned alongside each other
using the alignToRight method which simply sizes the second (right side)
GUI so that it has the same height as the first - then re-centers the combined
GUI.

g1=GImport (u ipane l (f i g u r e (1) , ’ Units ’ , ...
’ normal ized ’ , ’ Po s i t i on ’ , [0 . 2 0 . 2 0 . 5 0 . 7]) , ...
k c l . s i g t o o l . g u i . D e f a u l t P a n e l , f a l s e) ;

g2=GImport (u ipane l (f i g u r e (1) , ’ Units ’ , ...
’ normal ized ’ , ’ Po s i t i on ’ , [0 . 2 0 . 2 0 . 2 0 . 4]) , ...
k c l . s i g t o o l . g u i . D e f a u l t P a n e l , f a l s e) ;

14

g1 .a l ignToRight (g2) ;

Note that the height of g2 will set to the height of g1 following the align-
ToRight call.

A similar method, alignToSouth aligns two GUIs one above the other.
Both GUIs will be represented as separate GImport instances but a link

can be created between the two using the createLink method as described
below.

createLink and removeLink

In the example above, both GUIs were represented in separate GImport
instances. A link can be created between the two using the createLink
method:

g1 . c r ea t eL ink (g2) ;

This affects only the behaviour of the OK and Cancel buttons: Cancel will
delete both GUIs while OK will call getValues on both GUIs before deleting
them. To dissociate the GUIs, use the removeLink method:

g1.removeLink (g2) ;

Assigning fieldnames

The GImport constructor assigns field names in the structure return by
getHandles using the following rules:

1. If any object returns a name from its getName method, that name
will be used to derive the field name

2. If getName returns empty, getLabel will be tried followed by getText
until a non-empty result is returned.

3. If all fails, the class of the item will be used to form the field name
with a number added to the end of the string.

1 and 2 above allow the field names to be determined at the GUI design
stage. The resulting field name will have any white space removed. Also,
any text in brackets will be removed e.g. 'Range (V)' will give a field name of
'Range'. If the name has a leading '$' or '+' character, this will be removed.

15

In all cases, a check is made for duplication of field names. If a name is a
duplicate, a number will be appended to the string5. This check is made
only for the current level in the tree - names can be duplicated between
sub-structures of a nested structure.The resulting name will be checked
for validity as a MATLAB field name using genvarname, and the output of
genvarname will be used to name the field.

When a component has included sub-components, its field name ap-
pears twice: once as the name of a field containing a structure and again
within that structure as the name of the field containg the handle (or value)
of the component.

Sorting field names

The top level component is always listed as the first field in the getHandle
structure and any components with subcomponents appear as the first field
in any sub-structure describing their contents. Remaining fields are sorted
alphabetically at each level.

Customising a GUI in the GImport constructor

A final optional input to the GImport construtor allows a user-specified
function to be run once a GUI has been imported. All GUIs are initially
rendered at the size specified by the top component's PreferredSize if it is
set, or at the size of the parent MATLAB container if not. A user-specified
function will be run at this stage and before any new layouts are installed.
The constructor then takes the form

g=GImport (MATLABcontainer , j avaob jec t , ...
inc ludeFlag , f cn) ;

OR

g=GImport (MATLABcontainer , j avaob jec t , ...
inc ludeFlag , c e l l array) ;

OR
5Numbering begins at zero and the number is incremented each time a number is as-

signed to a field name**. Numbers are pre-pended with '_' so that the letter 'l' and num-
bers '1' are not confused. (**or would be assigned if includeFlag were true - so numbering
and field name assignments are more likely to be consistent regardless of the includeFlag
setting).

16

g=GImport (MATLABcontainer , j avaob jec t , ...
inc ludeFlag , s t r i n g) ;

When specified, fcn should be a function handle that will be invoked with
the top level java component (at this stage housed in a jcontrol object) as
its input. If a cell array, element 1 should contain the function handle with
elements 2 onward representing user-specified inputs to the function. If a
string is supplied, this must be the name of a method for the java compo-
nent requiring no inputs (use a cell array and a MATLAB function to invoke
methods with inputs).

Setting GUI behaviour in MATLAB

Using uiwait and uiresume

Once a GUI is initialised, it can be customised before the uiwait function is
invoked, e.g. by adding items to a JList or JComboBox. In general there-
fore, to GImport a GUI use:

g=GImport (f i g u r e () , examples .S implePanel ()) ;
% Place user−code here
. . .
u iwa i t () ;
s=g .ge tVa lue s () ;
% Place user−code here to act on the r e s u l t s ...

r e turned by the GUI
. . .

The default behaviour of the OK and Cancel buttons can be overridden if
a user-specified callcack is declared via the setOK, setCancel or setQuery-
OnCancel methods:

g.setOK (g .getHandle s () .OK , @fcn) ;
g . s e tCance l (g .ge tHandle s () .Cancel , @fcn) ;
% OR
g.setQueryOnCancel (g .ge tHandle s () .Cancel , @fcn) ;

In this case the function fcn should be defined to accept 3 inputs, the handle
of the button and the event object (as standard for MATLAB) together with
the GImport instance:

f unc t i on fcn (jObject , EventData , ...
GImportObjectInstance)

% User code goes here

17

re turn
end

The setOK etc. methods set up the callbacks by calling the GImport set-
Callback method. This can also be called explicitly by the user to set up
any callback where the GImport instance is to be passed as an argument as
described below.

The setCallback method

User-specified callbacks can be set up for any of the components in the
hierarchy using the MATLAB set command as usual. Note however, that
if the GImport object is to be passed as an input to the callback function,
as it was above, this will lead to leaked references to the object when it is
destroyed. To avoid these leaks, use the setCallback method to set up the
callbacks.

g . s e t C a l l b a c k (jObject , c a l l b a c k s t r i n g , @fcn , ...
arg0 , arg1 , . . .)

Here, jObject is the component whose callback is being set and callback-
string specifies the callback, eg. 'MouseClickedCallback'. The callback, fcn,
should be declared as:

f unc t i on fcn (jObject , Eventdata , arg0 , arg1 . . .)
% User code goeds here
re turn
end

Each GImport instance maintains a record of the callbacks set up via
setCallback and clears those references in its destructor method before
deleting the object. This will avoid reference leaks when the instance is
deleted.

Customising the GUI on-the-fly

As described below, GImport can deal with far more complex GUIs than
those above. Any Swing component can be included and components can
be nested. Nonetheless, it will often be simplest to include several separate
GUIs in a figure, each contained in a separate GImport instance. To look
good, these will need to share the same fonts, color schemes etc. While this

18

will often best be achieved at the design stage, the GImport class provides
methods to alter the properties of all components on-the-fly

invokeEDT

The invokeEDT method calls a specified Java method on all components
of a GImport instance. The method is always invoked on the Java Event
Despatch Thread (EDT). The invokeEDT method takes the form

obj.invokeEDT(methodname, arg0, arg1....)

where arg0 etc are optional input arguments passed to the method. For
example:

g=GImport (f i g u r e () , examples.SimplePanelOK ()) ;
g.invokeEDT (’ setFont ’ , java .awt .Font (’ Ar i a l ’ , ...

java.awt.Font.PLAIN , 16)) ;

will cause all components to use a 16 point plain Arial font.

invoke

The invoke method is similar to invokeEDT, but can return values. In ad-
dition, the invoke method does not explicitly cause code to execute on the
EDT. However, as the GImport constructor refers all components to the
EDT using the MATLAB javaObjectEDT function, this will not usually be
an issue6 . To return values from a call to invoke use e.g.

c o l o r s=g . invoke (’ getBackground ’) ;

This will return a cell array with one value for each component in the hier-
archy. For the panel above this might be:

[1x1 java.awt.Color]
[1x1 com.apple.laf.AquaNativeResources$CColorPaintUIResource]
[1x1 com.apple.laf.AquaNativeResources$CColorPaintUIResource]
[1x1 com.apple.laf.AquaNativeResources$CColorPaintUIResource]
[1x1 com.apple.laf.AquaNativeResources$CColorPaintUIResource]
[1x1 com.apple.laf.AquaNativeResources$CColorPaintUIResource]
[1x1 com.apple.laf.AquaNativeResources$CColorPaintUIResource]

6Thread-safety is discussed further below

19

[1x1 com.apple.laf.AquaNativeResources$CColorPaintUIResource]
[1x1 com.apple.laf.AquaNativeResources$CColorPaintUIResource]
[1x1 com.apple.laf.AquaNativeResources$CColorPaintUIResource]
[1x1 com.apple.laf.AquaNativeResources$CColorPaintUIResource]

If the method fails on any component, the corresponding cell array element
will be empty.

Note, as explained below, that the number of components can be greater
than the number returned by getHandles. To retrieve all components, in
the same order returned by invoke use the getComponents method:

g.getComponents ()

returns

[1x1 javahandle_withcallbacks.examples.SimplePanelOK]
[1x1 javahandle_withcallbacks.javax.swing.JButton]
[1x1 javahandle_withcallbacks.javax.swing.JButton]
[1x1 javahandle_withcallbacks.javax.swing.JCheckBox]
[1x1 javahandle_withcallbacks.javax.swing.JCheckBox]
[1x1 javahandle_withcallbacks.javax.swing.JCheckBox]
[1x1 javahandle_withcallbacks.javax.swing.JCheckBox]
[1x1 javahandle_withcallbacks.javax.swing.JCheckBox]
[1x1 javahandle_withcallbacks.javax.swing.JCheckBox]
[1x1 javahandle_withcallbacks.javax.swing.JCheckBox]
[1x1 javahandle_withcallbacks.javax.swing.JCheckBox]

Static runEDT and run methods

Static methods runEDT and run work in the same way as the class methods
invokeEDT and invoke but allow the programmer to supply a list of Java
component handles on input. The components may or may not be compo-
nents of a GImport instance. For example, to achieve the same result as
with invoke above:

comp=g.getComponents () ;
c o l o r s=GImport.run (comp , ’ getBackground ’) ;

The input comp can be a scalar instance, array or cell array of components.

20

The revalidate method

Components can be added/removed from the GUI hierarchy using stan-
dard Java. To refresh the handles structure and update management of the
GUI from the GImport class methods simply call the revalidate method.

g . r e v a l i d a t e ()

Note that this can alter the structure returned by getHandles and the up-
date will be reflected in the cell array returned by getComponents.

The find method

As GUIs get more complex, perhaps with panels nested in panels it may
be useful to retrieve a handle or handles using the find method. Figure 6
shows a GUI with several panels nested inside a main panel. Each panel

Figure 6: A GUI with some nested JPanels

has a titled border and the Name of each panel has been set to match these
titles. Note that the titles "Panel 1" and "Panel 2" are duplicated: there is a
Panel 2 in Panel 1, and Panels 1 and 2 inside Panel 3. Calling getHandles
for this GImport instance gives:

>> s=g.getHandles()
s =

Panel1: [1x1 javahandle_withcallbacks.examples.NestedPanels]
Panel2: [1x1 javahandle_withcallbacks.javax.swing.JPanel]

21

Panel3: [1x1 struct]

Note that blank space is removed from the field names in the structure. As
Panel3 has several components, it too is a structure. Examine it with

>> s.Panel3
ans =

Panel3: [1x1 javahandle_withcallbacks.javax.swing.JPanel]
Panel1: [1x1 javahandle_withcallbacks.javax.swing.JPanel]
Panel2: [1x1 javahandle_withcallbacks.javax.swing.JPanel]

22

Find takes 4 forms.

1. find(string)
With a string as input, find returns a component or cell array of com-
ponents for which string is the field name in the getHandles struc-
ture. For the example above,

g . f i n d (’ Panel1 ’) ;

returns

[1x1 javahandle_withcallbacks.examples.NestedPanels]
[1x1 javahandle_withcallbacks.javax.swing.JPanel]

2. find(propertyValue, propertyName)
Returns a component or cell array of components for which proper-
tyValue is matched by the value stored in propertyName (if it has an
is or a get method). For example:

g . f i n d (j a v a . l a n g . S t r i n g (’ Test s t r i n g ’) , ’Name ’) ;
g . f i n d (j ava . awt .Co lo r .wh i t e , ’ Background ’) ;
g . f i n d (true , ’ S e l e c t ed ’) ;

There are two special case propertyNames:

(a) 'fieldname' produces the same result as g.find(string) but can
accept a java.lang.String on input.

(b) 'bordertitle' returns objects with a border that returns proper-
tyValue from a call to getTitle() on the border.

3. find(class)
With a java.lang.class instance as input, find returns a component
or a cell array of components matching that class. Thus,

g . f i n d (javax . sw ing .JPane l () . g e t C l a s s ()) ;

returns

[1x1 javahandle_withcallbacks.javax.swing.JPanel]
[1x1 javahandle_withcallbacks.javax.swing.JPanel]
[1x1 javahandle_withcallbacks.javax.swing.JPanel]
[1x1 javahandle_withcallbacks.javax.swing.JPanel]

23

Note that the top panel, which extends the JPanel class, is not in-
cluded in the output. Use an optional flag input to find to output all
sub-classes of a class:

g . f i n d (javax . sw ing .JPane l () . g e t C l a s s () , t rue) ;

returns

[1x1 javahandle_withcallbacks.examples.NestedPanels]
[1x1 javahandle_withcallbacks.javax.swing.JPanel]
[1x1 javahandle_withcallbacks.javax.swing.JPanel]
[1x1 javahandle_withcallbacks.javax.swing.JPanel]
[1x1 javahandle_withcallbacks.javax.swing.JPanel]

4. find(object)
With an object specified on input, find returns the path name for the
component in the getHandles structure. For example,

comp=g.getHandle s () .Pane l3 .Pane l2 ;
g . f i n d (comp) ;

returns

'Panel3'
'Panel2'

Plainly, this is intended for use where a component has been identi-
fied in some way other by than calling getHandles.

Constructor options

The GImport constructor accepts optional string arguments that control
the settings during and immediately after import.

'guisize'

By default, the GUI is resized to fit the MATLAB container specified on
construction. Use the 'guisize' option to resize the MATLAB container to
the PreferredSize of the GUI.

24

g=GImport (MATLABcontainer , ...
k c l . s i g t o o l . g u i . D e f a u l t P a n e l () , true , [] , ...
’ g u i s i z e ’) ;

show and hide methods and options

GImport provides show and hide methods that, unsurprisingly, show and
hide the GUI. During instantiation, the GUI will be hidden and show will
be invoked by default to display it. Override this with optional inputs at
construction e.g.:

g=GImport (MATLABcontainer , ...
k c l . s i g t o o l . g u i . D e f a u l t P a n e l () , true , [] , ...
’ h ide ’) ;

g=GImport (MATLABcontainer , ...
k c l . s i g t o o l . g u i . D e f a u l t P a n e l () , t rue , [] , ...
’ show ’) ;%Defau l t behaviour

g.show() and g.hide() can be invoked, as usual, on-the-fly.

'center'

The 'center' (or 'centre') causes the GUI to be centered within the parent of
the MATLAB container specified on construction once displayed, e.g.:

g=GImport (MATLABcontainer , ...
k c l . s i g t o o l . g u i . D e f a u l t P a n e l () , true , [] , ...
’ g u i s i z e ’ , ’ c en t e r ’) ;

If MATLABcontainer is a uipanel in a figure it will be resized to the size
of the GUI then centered in the parent figure before show is called (by de-
fault).

'noresize'

Suppresses installation of the resize callback for the imported component.

'nolayout'

Suppresses all layout management. The GUI will be imported as usual but
no resizing will be implemented by the GImport class methods and instal-

25

lation of the resize callback for the imported component will be suppressed.
Use this if you have built in a MATLAB-friendly layout at the design stage.

Layout Management

To achieve the required MATLAB-like resize behaviour, GImport takes over
the layout management for selected components in the heirarchy. These
components have 'actively managed' layouts. GImport installs a SpringLay-
out7 for these components, and updates the constraints whenever the com-
ponent is resized.

The decision on whether to manage a layout actively is done at con-
struction or when revalidate is called on a GImport instance. The default
position is intended to give the behaviour a designer is likely to want so
hopefully, users should not need to consider the details with most GUIs.
Note that the management is installed where appropriate for each compo-
nent in the hierarchy - not just for top component. Active management of
the layout depends on:

1. Whether the layout installed by the GUI designer for the component
is in a list of actively managed layouts

2. Whether the parent container for the component is in a list of ex-
cluded components

getManagedLayoutList

Get a list of the actively managed layouts by calling the static getManaged-
LayoutList method which returns a cell array of those layouts as strings:

GImport.getManagedLayoutList ()

The default list (at the time of writing) is:

'java.awt.FlowLayout'
'java.awt.BoxLayout'
'java.awt.GridBagLayout'
'javax.swing.GroupLayout'
'javax.swing.SpringLayout'

7http://docs.oracle.com/javase/tutorial/uiswing/layout/spring.html

26

http://docs.oracle.com/javase/tutorial/uiswing/layout/spring.html

'com.jgoodies.forms.layout.FormLayout'
'org.jdesktop.swingx.HorizontalLayout'
'org.jdesktop.swingx.VerticalLayout'
'org.netbeans.lib.awtextra.AbsoluteLayout'
'org.jdesktop.layout.GroupLayout'
'com.intellij.uiDesigner.core.GridLayoutManager'

Editing the managed layout list

Alter the list of managed layouts using the following static methods

1. addManagedLayout(string) to add a layout to the list

2. removeManagedLayout(string) to remove a layout from the list

3. setManagedLayoutList(cell array) to replace the the list. The input
should be a cell array formatted as above for the list returned by get-
ManagedLayoutList

Note that, as the decision on whether to manage a layout actively is done
at construction, changing the list of managed layouts only affects GImport
instances created after the change. If a revalidate is issued on a GImport
instance after editing the managed layout list, any newly added layouts will
become managed but a removed layout will not be restored.

Imported GUIs can be positioned as usual using standard MATLAB
simply by positioning the host MATLAB container. Several convenience
methods are also provided: Note vec is a standard 4-element position vec-
tor

g . s e t P o s i t i o n (vec , un i t s) ;% units , i f not ...
s p e c i f i e d , d e f a u l t s to normal ized

g . g e t P o s i t i o n (un i t s) ;
g . s e t p i x e l p o s i t i o n (vec) ;
g . g e t p i x e l p o s i t i o n () ;
g . s e t C e n t r a l () ;%Pos i t i on GUI to cente r o f parent

getExcludedClasses

Excluded classes are those whose layout will not be actively managed re-
gardless of the layout installed at GUI-design stage. The decision on whether

27

to manage a layout actively is done at construction or when revalidate is
called on a GImport instance.

Get a list of excluded classes by calling the static getExcludedClasses
method which returns a vector of classes as a java.lang.Class array.

GImport .getExcludedClasses ()

Excluded classes are those whose default layout behaviour is already as re-
quired, so there is no need to manage their layouts. At the time of writing,
these are JSplitPane, JTabbedPane and JViewport (so that any component
using a view port will be excluded). Note that any subclass of these classes
will also be excluded and that other components will be excluded because
their default layout managers are not in the list of actively managed layouts
(as above).

Exclusion of the JTabbedPane is the only default exclusion users are
likely to want to change. Tabbed panes uses a specialized layout that is
platform-dependent and will not be actively managed although the tabbed
pane components can be. How GImport performs with a JTabbedPane
therefore depends on its contents. Exclusion by default allows the user to
set layouts at the design stage that will perform well when a MATLAB figure
is resized e.g. a FlowLayout. When included, the JTabbedPane is likely to
give unsatisfactory performance with the some added components.

Alter the list of excluded components using the following static methods

1. addExcludedClass(clzz) to add a component to the list

2. removeExcludedClass(clzz) to remove a component from the list

3. setExcludedClasses(clzz or clzz[]) to replace the the list.

In all cases, the input clzz, should be a java.lang.Class (or java.lang.Class[]),
not a string returned from a call to the MATLAB class function. Note that,
as the decision on whether to manage a layout actively is done at construc-
tion, changing the list of excluded components only affects GImport in-
stances created after the change. If a revalidate is issued on a GImport
instance after editing the excluded components list, any newly added lay-
outs will become managed but a removed layout will not be restored.

28

Using GImport with JFrames

Using a MATLAB container allows MATLAB graphics to be added. If you
have a pure Java GUI, you may prefer to use a simple JFrame. In that case,
the GUI must manage its own layout. The GXJFrame function returns a
JFrame for use in MATLAB and with GImport.

frame=GXJFrame(f i g u r e , t i t l e , j avaob j e c t) ;

creates a JFrame centered on the specified figure. The JFrame is not oth-
erwise associated with the figure. The javaobject, if specified, will be added
to, and fill, the JFrame.

To use the GXJFrame function with GImport, create a JFrame with

frame=GXJFrame(f i g u r e , t i t l e) ;

then add the contents with a call to GImport:

g=GImport (frame , MyPackage.MyClass () , i nc ludeF lag) ;

29

Drag and Drop support

Two static methods and one class method control drag-and-drop support
for imported components

putDragEnabled and setDragEnabled

To enable/disable dragging from a component or selection of components
use the static putDragEnabled method

GImport.putDragEnabled (h , f l a g)

where h is a Java component handle or an array or cell array of handles and
flag is true or false. The handles do not need to be components imported
via GImport. Default drag behaviour for the components will be activated.
In addtion,

GImport.putDragEnabled (h , f l a g , propertyname)

sets the flag then installs a javax.swing.TransferHandler with the speci-
fied propertyname e.g. 'background'.

As a convenience, the setDragEnabled method activates/deactivates
dragging from all components of a GImport instance for which setDra-
gEnabled/setTransferhandler is/are valid methods:

g.setDragEnabled (h , f l a g)
or
g.setDragEnabled (h , f l a g , propertyname)

To restore a default-compatible TransferHandler set propertyname to
'default'.

g.setDragEnabled (h , f l a g , ’ d e f a u l t ’)

The setDragEnabled method will use reflection to generate a new Trans-
ferHandler with the default settings for each class in h.

For components that so not implement the Java setDragEnabled method,
you will need to use the mouse event callbacks to set up custom drag be-
haviour (using e.g. the GImport setCallback).

putDropCallback

Any components that have drop support activated by default will imple-
ment the default drop behaviour. To customise the behaviour, use the

30

static putDropCallback method. Note that this method requires that the
associated DNDAssistant class is installed on your MATLAB path (this is
part of the Project Waterloo distribution and is included in the jar file)8.
If DNDAssistant is not defined, a warning will be issued. To customise a
drop from drag-and-drop, call:

GImport.putDropCallback (h , f cn) ;

where h is a Java component handle or array of handles and fcn is a func-
tion handle. When a drop occurs, the function will be called with two in-
puts: the handle of the Java component to which the drop was made and
a DNDAssistant instance. Thus, the function declaration should take the
form:

f unc t i on fcn (jObject , DNDAssistantInstance)
. . .
r e turn
end

The DNDAssistant class

A DNDAssistant instance can be used to access the data from a drop. It
simply extends the usual AWT DropTarget class overriding the usual lis-
teners. DNDAssistant and extracts and stores the transfered data before
calling the appropriate superclass listener. This overcomes a problem that
the DND system is not in the required state to extract information outside
of the Java listeners including inside MATLAB callbacks.

DNDAssistant implements the following methods:

1. getFlavors returns a list of available data flavors as a java.lang.Object[].

2. getData returns the available data as a java.lang.Object[], with one
element for each flavor returned by getFlavors.

3. isLocal returns true if the source of the drag was within the same Java
Virtual Machine as the drop (and false otherwise)

It is left to the user to handle the data as appropriate within the callback
function specified with putDropCallback.

8The DNDAssistant class is defined in the Project Waterloo kcl.jar or kcl-matlab.jar
file which is provided in the full download from http://sigtool.sourceforge.net/

31

http://sigtool.sourceforge.net/

Appendix 1: GUI designers

While GUIs can be programmed by hand, often to good effect, several GUI-
based GUI-designers are available in open-source Integrated Development
Environments and it can often be convenient to use these. If these GUIs
link against external libraries, as they usually will, those libraries will need
to be made available at run-time, usually by copying them to the project
/lib folder during the build phase.

Eclipse

Although I use NetBeans more extensively, the Eclipse GUI is the best in my
view. It also generates Java source code that can be modified by hand and
the GUI 'form' design will automatically update. Many other GUI designer
tools do not allow the code to be modified outside of the design tool.

To export a MATLAB loadable jar file, use File->Export and select the
Java/Jar file option.

NetBeans

With NetBeans, design a class that extends a standard Swing container.
Typically it will extend the javax.swing.JPanel class. To create a new Project,
choose File->New Project->Java Class Library. Activate the 'Use Dedicated
Folder for Storing Libraries' checkbox.

Right click again on the project in the Project Manager and choose Prop-
erties. Select 'Build->Packaging' and actiavate the 'Copy Dependent Li-
braries' checkbox.

Click the 'Source Packages' folder in Project Manager, right-click and
select New->Java package. Click on the package name in the Project Man-
ager and select New->JPanel Form.

Design the GUI(s), build the project and import the resuting jar file into
MATLAB using javaaddpath at command line.

IntelliJ IDEA

With IntelliJ, design a class that extends a standard Swing container. Typ-
ically it will extend the javax.swing.JPanel class. To create a new Project,

32

choose File->New Project and select 'Create project from scratch'. Name
the project as you want, activating the 'Create Module' and 'Create source
directory' checkboxes then click Next until the File Editor appears.

Click on the project in the Project Manager and select the 'src' folder.
Right-click and select New->Package. Right click on the newly created
package and select New->GUI Form. Select a Layout Manager (if new to
Java try the 'FormLayout (JGoodies)' layout). Ensure that your design is
associated with a top level Swing container.

Select Code->Generation source code editor and add a contructor for
your class. Make sure that at least the top level swing container is public
so that you can import it into MATLAB (it will be private by default).

Select File->Project Structure, select 'Artifacts' and click the small yel-
low '+' button at the top of interface. Select 'Jar' and 'From Modules with
Dependencies'. You do not need a 'Main' class. Select the 'copy to output
directory and link via manifest' checkbox.

Select Build->Build Artifacts to generate a jar file. Import the resuting
jar file into MATLAB using javaaddpath at command line.

Note that with IntelliJ the GUI to be imported will typically reside in a
property of the developed class e.g. MyClass.panel1 unless

33

	Purpose
	Working with imported GUIs in MATLAB
	 The getHandles method
	 The getValues method
	 The getComponents method
	Adding OK and Cancel buttons
	 setOK, setCancel and setQueryOnCancel methods
	 Linking instances
	Custom GUI design
	 alignToRight and alignToSouth
	 createLink and removeLink
	 Assigning fieldnames
	 Sorting field names
	 Customising a GUI in the GImport constructor
	Setting GUI behaviour in MATLAB
	 Using uiwait and uiresume
	 The setCallback method
	 Customising the GUI on-the-fly
	 invokeEDT
	 invoke
	 Static runEDT and run methods
	 The revalidate method
	 The find method
	Constructor options
	 'guisize'
	 show and hide methods and options
	 'center'
	 'noresize'
	 'nolayout'
	Layout Management
	 getManagedLayoutList
	 Editing the managed layout list
	 getExcludedClasses
	Using GImport with JFrames
	Drag and Drop support
	 putDragEnabled and setDragEnabled
	 putDropCallback
	 The DNDAssistant class
	Appendix 1: GUI designers
	 Eclipse
	 NetBeans
	 IntelliJ IDEA

